
Towards the Industrial Scale Development of
Custom Static Analyzers

John Anton, Eric Bush, Allen Goldberg, Klaus Havelund, DougSmith, Arnaud Venet
Kestrel Technology LLC

4984 El Camino Real #230
Los Altos, CA 94022

{anton,ericbush,goldberg,havelund,smith,arnaud}@kestreltechnology.com

http://www.kestreltechnology.com

Abstract— This paper presents a high level overview of a tech-
nology called CodeHawk whose purpose is to support verifi-
cation of software properties. Today’s commercially available
static analysis tools identify potential runtime and vulnerability
problems based on properties described in the semantics of
the programming language. While CodeHawk will detect those
classes of problems, it is distinguished by the user’s ability to
generate high performance static analyzers for the verification
of application-specific properties. Today’s static analyzers may
also trade off assurance and flexibility for speed in handling
very large code sets. Our goal with CodeHawk is to handle
industrial sized code sets with the highest speed in the industry
among those offering 100% verification assurance. CodeHawk’s
customizability opens up additional uses of the core technology
beyond detecting runtime or vulnerability exposures. In this
paper we describe one such use, namely static analysis in support
of optimized dynamic analysis.

I. I NTRODUCTION

In this paper we present our approach to static analysis of large
software systems using a platform enabling the rapid devel-
opment of custom static analyzers: CodeHawk. Unlike some
static analysis approaches that are optimized to identify bugs,
but not prove the absence of bugs, our objective is to achieve
full code coverage so that there are no false negatives with
respect to a set of well-defined properties. This is appropriate
for high assurance systems, particularly those that must pass
a rigorous certification process. In particular CodeHawk can
prove properties of a C program’s memory accesses that are
sufficient for 100% assurance of the absence of buffer overflow
errors. Insuring there are no false negatives together withan
acceptably low rate of false positives raises a challenging
scaling problem. Our approach to achieving scalability is to
customize the analysis to the application domain, and to use
algorithms engineered for high performance.

CodeHawk is a component of a larger system that combines
static analysis with dynamic analysis. Dynamic analysis refers
to monitoring the execution of a program for conformance
with a set of properties. Static and dynamic analysis interact
in two ways. First, static analysis can either establish that a
property holds, establish that it does not, or fail to come to
any conclusion. Dynamic checks may be inserted in the code
to assist this process. Second, checking of dynamic properties

may be optimized by static analysis. Within our framework
dynamic properties are complex temporal properties expressed
in a rich specification notation and the validity of such a
property may depend on establishing relatedsub-properties
at many different program points. Static analysis may verify
these sub-properties.

The remainder of this paper is organized as follows. The
next section overviews abstract interpretation, the theory on
which CodeHawk is based. This is followed by an overview
of CodeHawk. The next section describes how domain-specific
properties are incorporated into CodeHawk through motivating
examples. Then we discuss dynamic analysis and its integra-
tion with static analysis. The final section states conclusions.

II. A BSTRACT INTERPRETATION

Static analysis is a generic term encompassing a variety
of techniques that vary greatly in scope and nature (type
checking, coding style analysis, model checking, dataflow
analysis, statistical pattern inference, pointer analysis, etc.).
Abstract Interpretation [5], [6] is a theoretical framework
enabling the systematic construction ofsoundstatic analyzers.
By soundness, we mean thatall possible execution paths are
taken into account in the analysis. Hence, the properties of
the program discovered by such an analyzer are guaranteed to
hold in any configuration of the program. Formal verification
of program properties can thus be achieved by Abstract
Interpretation. A precise description of Abstract Interpretation
is beyond the scope of this paper. We rather give the main
intuitions underpinning the theory.

The behavior of a program is described by the set of its
execution traces under all possible inputs. Execution traces
can be formally described using a mathematical modeling
technique calledoperational semantics[3]. Abstract Interpre-
tation allows us to build a finite machine-computable model
of the operational semantics of a program using two tools:
partitioning andabstraction. Partitioning consists of grouping
program configurations into a finite number of disjoint sets as
illustrated in Fig. 1. For example, we can partition program
configurations with respect to program control points, i.e., two
configurations are in the same partition iff they reach the same



Execution Traces Abstract Interpretation

Fig. 1. Partitioning of program configurations

statement in the program. Abstraction consists of defining a
single finite representation of all configurations in a partition.
For example, if all the program variables are integer-valued, a
possible abstraction consists of assigning an interval to each
variable that contains all possible values of the variable in any
configuration of the partition [4].

The abstraction process may cause the representation to denote
program configurations that never occur in real executions.For
example, if we have two configurations in a partition where
i = 2 andi = 4, variablei is represented by the interval
[2, 4], denoting the spurious configuration wherei = 3.
This explains the existence offalse positivesin program veri-
fication by Abstract Interpretation. A property may very well
hold for all program executions, however the static analyzer
cannot verify this is true, because it is violated for spurious
configurations resulting from the abstraction employed. Note
that we cannot havefalse negatives, i.e., a property cannot
deemed true by the analyzer, even though it is violated in
some executions. This is becauseall program configurations
are covered by the abstraction.

Without entering in too much detail, we will just say that Ab-
stract Interpretation provides a methodology and a collection
of techniques that allow us to construct anabstract semantic
model M of the program, that is a machine-representable
structure representing the program dynamics on the abstract
partitioning of configurations. The abstract semantic model is
usually defined by induction on the syntax of the program
and can be automatically generated by a proper translator. The
envelope ofM, denoting the set of all possible configurations
of the program, can be computed iteratively using well-
studied fixpoint algorithms [2]. This structure can then be
used to conduct automatic verification of the desired program
properties.

We illustrate the abstract interpretation process on a small ex-
ample. Consider the following piece of C code that initializes
an array of double-precision floating point numbers:

1: double a[10];
2: int i;
3:

4: for(i = 0; i < 10; i++) {
5: a[i] = 1.0;
6: }
7: a[i] = 3.0;

Now, assume that we are interested in assessing the correctness
of all array accesses. In the example, this translates into
verifying the property0 ≤ i < 10 at lines5 and7. The ab-
stract semantic model defines the level of abstraction at which
the analysis algorithms will operate. For example, one can
choose to ignore all information stored in data structures.This
makes sense for applications like embedded systems where
the control structure is essentially driven by local variables,
as described in [10]. This abstraction may be inappropriate
for other families of programs. Once the abstract semantic
model has been determined, abstract interpretation algorithms
compute an envelope of all possible values for the program
variables. If we choose an abstraction of numerical variables
based on intervals, the analysis will automatically infer that the
range of variablei is [0, 9] at program point5, and [10, 10]
at program point7. Then, the computed ranges are used to
check the safety properties for array access.

III. C ODEHAWK TECHNOLOGY

The Abstract Interpretation approach to static analysis looks
attractive, but it presents major hurdles. Building a static
analyzer based on Abstract Interpretation is a complex en-
gineering task that can require substantial domain expertise.
Designing the abstract semantic modelM and writing the
translator that takes the program text and producesM is
the most time-consuming part of the process. Moreover, the
abstract semantic model is specially designed to support the
verification of a small number of program properties (usually
one). Scaling to large code-bases has been proven possible
by tailoring the abstract semantic model toward the particular
structure of the software analyzed [10], [7]. All these factors
lead to large, complex, monolithic static analyzers that are
able to deal only with a handful of program properties. This
approach is impractical for all but a few critical applications,
and then only those blessed with a large V&V budget.



The purpose of the CodeHawk technology precisely con-
sists of bringing the Abstract Interpretation approach to a
practical production level. CodeHawk is built on top of the
Specware [8] formal specification environment developed by
Kestrel Institute. The main capability offered by CodeHawkis
that of building a fully functional and efficient static analyzer
by assembling components drawn from a library of prede-
fined abstractions. The Specware environment is particularly
supportive of that activity. In particular, the code of the
whole analysis engine can be automatically generated from
the specification of the analyzer. A static analyzer checking
for a certain class of properties and tailored for a specific
class of software can be rapidly specified and generated using
CodeHawk.

CodeHawk’s precursor, CGS [10] is a static array-bound
checker tailored for NASA’s flight mission software. It can
scale up to half a million lines of C code, with a false
positive rate< 20%. CGS is written in C and has a mono-
lithic architecture. Modifying the tool in order to have it
analyze specific constructs of flight software more precisely
is a complex and time consuming task. We found that the
remaining20% false positives were essentially due to array
bounds transmitted between threads through message queues.
Modifying the abstract semantic model in order to track this
information precisely was not difficult in theory, but the impact
on the implementation was enormous. This basically stopped
us from further specializing the analyzer. CodeHawk aims at
simplifying this specialization process by generating analyzers
that have a flexible and tunable architecture.

Building an abstract semantic model from scratch is facilitated
by CodeHawk, but still remains the job of an expert. We
are currently working toward a specification environment built
on top of CodeHawk that offers the capability of specifying
custom program properties to verify and generate the corre-
sponding analyzer. This specification environment will provide
a high-level interface to CodeHawk that is accessible to the
non-specialist and enable the construction of static analyzers
for a broad spectrum of properties. The SAMATE database [9]
will provide the basis for studying the specification language.

IV. STATIC ANALYSIS FROM NUMERICAL SPECIFICATIONS

In this section we illustrate the concept of a specification
environment men- tioned above on two examples: a string copy
function and a communication application using ”nonces”.
These examples rely on the core capability currently imple-
mented in CodeHawk: the analysis of numerical computations.
They show analyzers for vulnerable use of the programmming
language itself, resp. an application-specific property.

A. Buffer Overflow Violations

Consider the functiontest defined below:

void test(char *str){
char buf[10];

memccpy(buf, str, 0, 10);
printf("results: %s\n", buf);

}

which is an extract of example 000-001-314 in [9]. The
function takes as argument a string and prints it out, although
in an unnecessarily complicated, and subsequently unsafe,
manner, that embodies a potential for a buffer overflow. The
function declares an arraybuf of size10. This array is then
filled up with the text string. This is done by a call of the
function:

void *memccpy(void *s1, const void *s2,
int c, size_t n);

the description of which is:

memccpy copies bytes from memory area s2 into
s1, stopping after the first occurrence of c has been
copied, or after n bytes have been copied, whichever
comes first.

The problem occurs whenstrlen(str) (the length of the
string) is bigger than or equal to the size of the array it is
copied to (here10), since in this case a final ’0’ is not copied
into buf, and hence ifbuf is now used as a string the end
of this string will not be clearly marked. We want to enforce
the policy that the length of the copied string is strictly less
than the size of the array. Then are we sure that a final ’0’ is
copied in.

In order to detect such an error statically, a specialized
algorithm can be programmed that performs a numerical
abstraction of the program and analyzes this abstraction with
respect to a desired property. In this specific case the ab-
straction keeps track of sizes of arrays and sizes of strings,
and the specification states that any call ofmemccpy should
copy a string with a smaller size than the size of the target
array. The alternative to hard coding a static analyzer for
this specific problem is to apply our generic approach and
synthesize a static analyzer from an abstraction specification
and a property specification stating a property to be checked
over the abstraction.

Theproperty specificationnow states the desired property, i.e.,
that calls ofmemccpy copy fitting strings:

check NoBufferOverflow =
always(memccpy(arr, str, 0, N)

-> size(str) < size(arr))

Of course this property can also be checked dynamically
during program execution, and this might be a solution in
case the property cannot be checked statically.

B. Nonce Repetition Violations

The above example illustrated the detection of runtime errors
in the form of buffer overflows. The following example



illustrates a security problem concerned with uniqueness of
authentification keys callednonces. Nonces are used for ex-
ample in authentication protocols as a means of preventing
replay attacks. A nonce is a “number used once”. That is, the
creator of the nonce should insure that it has not been used in
previous runs of the protocol and that it is not guessable by
an attacker.

Typically, randomly generated numbers are used as nonces.
The SAMATE database [9] includes test cases (for example
example test case 000-000-054) asserting that nonces should
be used for the present occasion and only once. Here we
consider how static and dynamic analysis can be used to assure
correct uses on nonces. We assume a protocol is implemented
by a collection of procedure calls, and that if a step in the
protocol requires a nonce it is a parameter to a specific
proceduresendNonce.

The abstraction specification would in this case define an
abstract state that maps each nonce to an integer indicating
how many times it has been used. It will also state how this
abstract state is updated as a result of execution of program
statements. The property specification will state that the integer
associated to a nonce should never go beyond 1. Static analysis
can also be used to check that the source of the value of the
nonce parameter is a random variable library function.

However, if that cannot be statically validated, dynamic analy-
sis can check that the nonce parameter is distinct at each
invocation. This property can be expressed in our EAGLE

monitoring language [1] as:

monitor NonceOnlyOnce =
always(sendNonce(x) -> NonceNotSeen(x))

rule NonceNotSeen(int x) =
previously(sendNonce(y) -> x != y)

V. COMBINING STATIC AND DYNAMIC ANALYSIS

Above it was mentioned that properties can be specified in
a formal specification language and then checked statically.
In case the static analysis cannot demonstrate the property,
the whole property, or the part of the property that cannot
be checked statically, can be checked dynamically during
program execution using runtime monitoring techniques. A
different way of thinking about this is to regard static analy-
sis as a technique to optimize runtime monitoring: given
a property to be monitored during execution, optimize the
monitoring as much as possible in order to minimize the
impact on execution time and memory consumption. In reality
these are two views of the same problem, but from different
perspectives.

These ideas can be brought even further by observing a
current trend within Aspect Oriented Programming (AOP):
the extension of pointcut languages with tracecuts (predicates
on execution traces). In a traditional AOP language such as
AspectJ an aspect contains advices of the form: “when this

piece of code is encountered, execute this other piece of code”.
With tracecuts it is possible to state properties even more
succinctly: “when thistemporal property is true about the
execution trace, execute this other piece of code”. Such a
framework can furthermore be supported by static analysis in
the sense that static analysis statically attempts to determine
when the tracecuts are true in the program and hence the new
code can be inserted. In case it cannot be determined, monitors
must be inserted in the code, which trigger the new code when
reaching specific states.

The MODE system currently under development at Kestrel
Technology combines static and dynamic analysis in such
an AOP framework with tracecuts, in MODE called policies.
MODE focuses on (1) a policy language based on state ma-
chines for expressing system safety and information assurance
constraints, (2) static analysis mechanisms for detectingpolicy
applicability in a program, and (3) enforcement mechanisms
and associated assurance arguments and evidence. An over-
arching objective is to lower the cost of producing certified
software.

MODE uses fast static analysis algorithms provided by Code-
Hawk to match each policy against the program. The engineer
can specify whether to check a policy or enforce a policy. For
each location in the program where static analysis determines
that a policy applies, MODE either checks that it holds
(generating a diagnostic message when it fails to hold) or
automatically generates enforcement code for insertion atthat
location. MODE outputs a program that is consistent with the
original program and that is guaranteed to satisfy the enforced
policy.

VI. CONCLUSION

Static analysis for 100% verification of runtime, safety and
security properties, is important. But to be practical, it must
satisfy two requirements. First, it must scale to application
code sizes used in industry. Second, it must support verifica-
tion of properties that include those better defined in terms
of the application’s objectives, in addition to today’s focus on
those defined in terms of a programming language’s usage.
We have introduced a technology platform called CodeHawk
that can meet those requirements.

REFERENCES

[1] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based
Runtime Verification. InProceedings of Fifth International VMCAI
conference (VMCAI’04), volume 2937 ofLNCS. Springer, January 2004.

[2] F. Bourdoncle. Efficient chaotic iteration strategies with widenings.
Lecture Notes in Computer Science, 735, 1993.

[3] P. Cousot. Semantic foundations of program analysis. InS.S. Muchnick
and N.D. Jones, editors,Program Flow Analysis: Theory and Applica-
tions, chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood Cliffs,
1981.

[4] P. Cousot and R. Cousot. Static determination of dynamicproperties
of programs. InProceedings of the Second International Symposium on
Programming, pages 106–130. Dunod, Paris, France, 1976.



[5] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th Symposium on Principles of
Programming Languages, pages 238–353, 1977.

[6] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. InConference Record of the Sixth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
269–282. ACM Press, New York, NY, 1979.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.Monniaux,
and X. Rival. The ASTŔEE Analyser. InProceedings of the European
Symposium on Programming (ESOP’05), volume 3444 ofLecture Notes
in Computer Science, pages 21–30, 2005.

[8] Kestrel. Specware System and documentation, 2003.
http://www.specware.org/.

[9] NIST SAMATE Reference Dataset Project. Soft-
ware Assurance Metrics and Tool Evaluation, NIST.
http://samate.nist.gov/SRD/srdFiles/index.php.

[10] A. Venet and G. Brat. Precise and efficient static array bound checking
for large embedded C programs. InProceedings of the International
Conference on Programming Language Design and Implementation,
pages 231–242, 2004.


